AMS 261: Probability Theory (Fall 2017)

Homework 1 (due Tuesday 10/17)

- 1. Consider a sample space Ω .
- (a) Prove that any intersection of σ -fields (of subsets of Ω) is a σ -field. That is, if \mathcal{F}_j , $j \in J$, are σ -fields on Ω (with J an arbitrary index set, countable or uncountable), then show that $\mathcal{F} = \bigcap_{j \in J} \mathcal{F}_j$ is a σ -field.
- (b) Show by counterexample that a union of σ -fields may not be a σ -field.
- 2. Given a sample space Ω and a collection \mathcal{E} of subsets of Ω , the σ -field generated by \mathcal{E} , $\sigma(\mathcal{E})$, is defined as the intersection of all σ -fields on Ω that contain \mathcal{E} . (As discussed in class, $\sigma(\mathcal{E})$ is the smallest σ -field that contains \mathcal{E} .)
- (a) Consider two collections \mathcal{E}_1 and \mathcal{E}_2 of subsets of Ω . Show that if $\mathcal{E}_1 \subseteq \mathcal{E}_2$, then $\sigma(\mathcal{E}_1) \subseteq \sigma(\mathcal{E}_2)$.
- (b) As in part (a), let \mathcal{E}_1 and \mathcal{E}_2 be collections of subsets of the sample space Ω . Prove that if $\mathcal{E}_1 \subseteq \sigma(\mathcal{E}_2)$ and $\mathcal{E}_2 \subseteq \sigma(\mathcal{E}_1)$, then $\sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2)$.
- 3. Let \mathcal{F} be a collection of subsets of a sample space Ω .
- (a) Suppose that $\Omega \in \mathcal{F}$, and that when $A, B \in \mathcal{F}$ then $A \cap B^c \in \mathcal{F}$. Show that \mathcal{F} is a field.
- (b) Suppose that $\Omega \in \mathcal{F}$, and that \mathcal{F} is closed under the formation of complements and finite pairwise disjoint unions. Show by counterexample that \mathcal{F} need not be a field.
- 4. Consider the sample space $\Omega = (0, 1]$ and the collection \mathcal{B}_0 of all finite pairwise disjoint unions of subintervals of (0, 1]. That is, any member B of \mathcal{B}_0 is of the form $B = \bigcup_{i=1}^n (a_i, b_i]$, where nis finite, and for each $i = 1, ..., n, 0 \le a_i < b_i \le 1$, with $(a_i, b_i] \cap (a_j, b_j] = \emptyset$ for any $i \ne j$. Show that \mathcal{B}_0 augmented by the empty set is a field, but not a σ -field.
- 5. Let $\Omega = \{\omega_1, \omega_2, ...\}$ be a countable set, $\{p_n : n = 1, 2, ...\}$ be a sequence of non-negative real numbers such that $\sum_{n=1}^{\infty} p_n = 1$, and \mathcal{F} be the collection of all subsets of Ω . For each $A \in \mathcal{F}$, define the set function

$$P(A) = \sum_{\{n:\,\omega_n \in A\}} p_n.$$

Show that (Ω, \mathcal{F}, P) is a probability space.