AMS 261: Probability Theory (Fall 2017)

Homework 2 (due Thursday 10/26)

1. Let $\left\{A_{n}: n=1,2, \ldots\right\}$ be a countable sequence of subsets of a sample space Ω.
(a) Assume that $\left\{A_{n}: n=1,2, \ldots\right\}$ is an increasing sequence, that is, $A_{n} \subseteq A_{n+1}$, for all $n \geq 1$. Show that $\lim _{n \rightarrow \infty} A_{n}$ exists, and $\lim _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} A_{n}$.
(b) Assume that $\left\{A_{n}: n=1,2, \ldots\right\}$ is a decreasing sequence, that is, $A_{n+1} \subseteq A_{n}$, for all $n \geq 1$. Show that $\lim _{n \rightarrow \infty} A_{n}$ exists, and $\lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} A_{n}$.
2. Consider countable sequences, $\left\{A_{n}: n=1,2, \ldots\right\},\left\{B_{n}: n=1,2, \ldots\right\}$ and $\left\{C_{n}: n=1,2, \ldots\right\}$, of subsets of the same sample space Ω. Assume that $A_{n} \subseteq B_{n} \subseteq C_{n}$, for all $n \geq K$ for some sufficiently large positive integer K. Moreover, suppose that $\limsup _{n \rightarrow \infty} C_{n} \subseteq \liminf _{n \rightarrow \infty} A_{n}$. Prove that each of $\lim _{n \rightarrow \infty} A_{n}, \lim _{n \rightarrow \infty} B_{n}$ and $\lim _{n \rightarrow \infty} C_{n}$ exists, and that all three limits are the same.
3. Consider a measurable space (Ω, \mathcal{F}) and a set function $P: \mathcal{F} \longrightarrow[0,1]$, which satisfies $P(\Omega)=1$, and $P(A \cup B)=P(A)+P(B)$ for any A and B in \mathcal{F} with $A \cap B=\emptyset$. Moreover, assume that P is continuous, that is, $P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$, for any sequence $\left\{A_{n}: n=1,2, \ldots\right\}$ of sets in \mathcal{F} for which $\lim _{n \rightarrow \infty} A_{n}$ exists. Prove that P is a probability measure on (Ω, \mathcal{F}).
4. Prove that any non-decreasing function from \mathbb{R} to \mathbb{R} is measurable. (Assume the usual Borel σ-field on \mathbb{R}.)
5. Let $\left(\Omega_{j}, \mathcal{F}_{j}\right), j=1,2,3$, be measurable spaces. Consider measurable functions $X: \Omega_{1} \rightarrow \Omega_{2}$ and $Y: \Omega_{2} \rightarrow \Omega_{3}$, and define the composition function $Y \circ X: \Omega_{1} \rightarrow \Omega_{3}$ by $Y \circ X\left(\omega_{1}\right)=Y\left(X\left(\omega_{1}\right)\right)$, for any $\omega_{1} \in \Omega_{1}$. Show that $Y \circ X$ is a measurable function.
6. Consider a sequence $\left\{X_{n}: n=1,2, \ldots\right\}$ of \mathbb{R}-valued random variables defined on the same probability space (Ω, \mathcal{F}, P). Let C be the set of $\omega \in \Omega$ such that $\left\{X_{n}(\omega): n=1,2, \ldots\right\}$ is a convergent numerical sequence. Prove that $C \in \mathcal{F}$.
7. Let X and Y be \mathbb{R}-valued random variables defined on the same probability space (Ω, \mathcal{F}, P), and consider the subset of Ω defined by $A=\{\omega \in \Omega: X(\omega) \neq Y(\omega)\}$.
(a) Prove that A is an event in \mathcal{F}.
(Hint: Recall the Archimedean Property of the real numbers, according to which, for any two real numbers a and b with $a<b$, there exists a rational number q such that $a<q<b$.)
(b) Assume that $P(A)=0$. Prove that $P\left(X^{-1}(B)\right)=P\left(Y^{-1}(B)\right)$ for any Borel subset B of \mathbb{R} (in which case, we say that the distributions of X and Y are equal).
