AMS 261: Probability Theory (Fall 2017)

Homework 3 (due Tuesday 11/14)

1. Consider a countable sequence $\left\{X_{n}: n=1,2, \ldots\right\}$ of \mathbb{R}^{+}-valued random variables defined on a common probability space (Ω, \mathcal{F}, P). Assume that all random variables X_{n} have the same distribution, with distribution function given by $F(x)=1-\exp (-x), x \in \mathbb{R}^{+}$.

- Show that

$$
P\left(\liminf _{n \rightarrow \infty}\left\{\omega \in \Omega: X_{n}(\omega) \leq(1+\delta) \log (n)\right\}\right)=1,
$$

for any fixed $\delta>0$.
2. Let F and G be distribution functions on \mathbb{R} such that $G(t) \leq F(t)$, for all $t \in \mathbb{R}$ (in which case, G is said to be stochastically larger than F).

- Construct two \mathbb{R}-valued random variables X and Y, defined on the same probability space (Ω, \mathcal{F}, P), such that the distribution function of X is G, the distribution function of Y is F, and $P(X \geq Y)=1$.

3. Consider a simple random variable X defined on some probability space (Ω, \mathcal{F}, P), and let F be its distribution function. Denote by $F\left(x^{-}\right)=\lim _{y}{ }_{x x} F(y)$ (or equivalently, $F\left(x^{-}\right)=$ $\lim _{n \rightarrow \infty} F\left(x_{n}\right)$ for an arbitrary increasing sequence $\left\{x_{n}: n=1,2, \ldots\right\}$ converging to $\left.x\right)$.

- Show that the expectation of X can be written in the form

$$
\mathrm{E}(X)=\sum_{x \in \mathbb{R}} x\left\{F(x)-F\left(x^{-}\right)\right\} .
$$

4. Let X be a simple random variable (taking both negative and positive values) defined on some probability space (Ω, \mathcal{F}, P).

- Show that expectation definitions 1 (for simple random variables) and 3 (for general random variables taking values on the extended real line) are equivalent.

5. Consider an $\overline{\mathbb{R}}^{+}$-valued random variable X defined on some probability space (Ω, \mathcal{F}, P), and assume that $\mathrm{E}(X)<\infty$. Let $A=\{\omega \in \Omega: X(\omega)=+\infty\}$, and note that, based on the general definition for $\overline{\mathbb{R}}^{+}$-valued measurable functions, we have $A \in \mathcal{F}$.

- Show that X is almost surely finite, that is, $P(A)=0$.

6. Consider a sequence $\left\{X_{n}: n=1,2, \ldots\right\}$ of $\overline{\mathbb{R}}^{+}$-valued random variables defined on the same probability space (Ω, \mathcal{F}, P). Assume that the sequence is (pointwise) increasing, that is, for all n and for each $\omega \in \Omega, X_{n}(\omega) \leq X_{n+1}(\omega)$. Denote by X the pointwise limit of $\left\{X_{n}: n=1,2, \ldots\right\}$, that is, for each $\omega \in \Omega, X(\omega)=\lim _{n \rightarrow \infty} X_{n}(\omega)$, and assume that $\mathrm{E}(X)<\infty$. Define the variance for X by $\operatorname{Var}(X)=\mathrm{E}\left\{(X-\mathrm{E}(X))^{2}\right\}$, and similarly, for each $n, \operatorname{Var}\left(X_{n}\right)=\mathrm{E}\left\{\left(X_{n}-\mathrm{E}\left(X_{n}\right)\right)^{2}\right\}$. (In general, the variance for a random variable Y with finite expectation $\mathrm{E}(Y)$ is given by $\operatorname{Var}(Y)=\mathrm{E}\left\{(Y-\mathrm{E}(Y))^{2}\right\}$, whether finite or infinite.)

- Prove that $\operatorname{Var}(X)=\lim _{n \rightarrow \infty} \operatorname{Var}\left(X_{n}\right)$.

