AMS 261: Probability Theory (Fall 2017)

Homework 4 (due Tuesday 11/28)

- 1. Consider a sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R} -valued random variables defined on the same probability space (Ω, \mathcal{F}, P) . Assume that the sequence is (pointwise) increasing, that is, for all n and for each $\omega \in \Omega$, $X_n(\omega) \leq X_{n+1}(\omega)$. Moreover, assume that $\mathrm{E}(X_1) > -\infty$. Denote by X the pointwise limit of $\{X_n : n = 1, 2, ...\}$, that is, for each $\omega \in \Omega$, $X(\omega) = \lim_{n \to \infty} X_n(\omega)$.
 - Prove that $E(X) = \lim_{n \to \infty} E(X_n)$.
- 2. Let $\{X_n : n = 1, 2, ...\}$ be a countable sequence of $\overline{\mathbb{R}}^+$ -valued random variables defined on a common probability space (Ω, \mathcal{F}, P) , and assume that $\mathrm{E}(\sum_{n=1}^{\infty} X_n) < \infty$.
 - Show that $E\left(\sum_{n=1}^{\infty} X_n\right) = \sum_{n=1}^{\infty} E(X_n)$.
- 3. Let $\{X_n : n = 1, 2, ...\}$, $\{Y_n : n = 1, 2, ...\}$, and $\{Z_n : n = 1, 2, ...\}$ be sequences of \mathbb{R} -valued random variables (all the random variables are defined on the same probability space). Assume that: (a) $\mathrm{E}(X_n)$ and $\mathrm{E}(Z_n)$ exist for all n and are finite; (b) each of the three sequences converges almost surely (denote by X, Y, and Z the respective almost sure limits); (c) $\mathrm{E}(X)$, $\mathrm{E}(Y)$, and $\mathrm{E}(Z)$ exist and are finite; (d) $X_n \leq Y_n \leq Z_n$ almost surely; (e) $\lim_{n \to \infty} \mathrm{E}(X_n) = \mathrm{E}(X)$, and $\lim_{n \to \infty} \mathrm{E}(Z_n) = \mathrm{E}(Z)$.
 - Show that $\lim_{n\to\infty} E(Y_n) = E(Y)$.
- 4. Let $\{X_n : n = 1, 2, ...\}$ be a countable sequence of \mathbb{R} -valued random variables defined on a common probability space (Ω, \mathcal{F}, P) . Assume that there exist finite real constants p > 1 and K > 0 such that $\sup_n \mathbb{E}(|X_n|^p) \leq K$.
 - Show that $\{X_n : n = 1, 2, ...\}$ is uniformly integrable.
- 5. Let X be an \mathbb{R} -valued random variable, defined on probability space (Ω, \mathcal{F}, P) , with finite expectation $\mu = E(X)$ and finite standard deviation $\sigma = {\operatorname{Var}(X)}^{1/2}$.
 - Prove that for any $0 \le z \le \sigma$,

$$P(\{\omega \in \Omega : |X(\omega) - \mu| \ge z\}) \ge \frac{\sigma^4 \{1 - (z/\sigma)^2\}^2}{\mathrm{E}(|X - \mu|^4)}.$$

- 6. Let $\{X_n : n = 1, 2, ...\}$ be a sequence of \mathbb{R} -valued random variables defined on a common probability space (Ω, \mathcal{F}, P) . Suppose there exists an \mathbb{R}^+ -valued random variable Y, defined on (Ω, \mathcal{F}, P) , such that $\mathrm{E}(Y) < \infty$ and $|X_n| \leq Y$, almost surely, for all n.
 - Show that $\{X_n : n = 1, 2, ...\}$ is uniformly integrable.
- 7. Consider a countable sequence $\{X_n: n=1,2,...\}$ of \mathbb{R} -valued random variables, defined on a common probability space (Ω, \mathcal{F}, P) , and an increasing function $G: [0, \infty) \to [0, \infty)$, which satisfies $\lim_{t\to\infty} \{t^{-1}G(t)\} = \infty$ and $0 < \sup_n \mathrm{E}\{G(|X_n|)\} < \infty$.
 - Prove that $\{X_n : n = 1, 2, ...\}$ is uniformly integrable.