AMS 261: Probability Theory (Fall 2017)

Homework 5 (due Wednesday 12/13)

- 1. Let X be a random variable defined on a probability space (Ω, \mathcal{F}, P) and taking values in a measurable space (Ψ, \mathcal{G}) , where \mathcal{G} is the σ -field on space Ψ . Consider the collection \mathcal{A} of subsets of Ω consisting of $X^{-1}(B)$ for all $B \in \mathcal{G}$.
 - Show that \mathcal{A} is a σ -field on Ω .
- 2. For k = 1, 2, ..., consider random variables $X_k : (\Omega, \mathcal{F}, P) \to (\Psi_k, \mathcal{G}_k)$ and measurable functions $\varphi_k : (\Psi_k, \mathcal{G}_k) \to (\Theta_k, \mathcal{H}_k)$. Assume that the countable sequence of random variables $\{X_k : k = 1, 2, ...\}$ is independent.

• Prove that the sequence $\{\varphi_k \circ X_k : k = 1, 2, ...\}$ is independent.

3. Let $\{A_n : n = 1, 2, ...\}$ be a countable independent sequence of events on a probability space (Ω, \mathcal{F}, P) .

• Prove that $P(\bigcap_{n=1}^{\infty} A_n) = \prod_{n=1}^{\infty} P(A_n)$.

(Note: For a countable sequence of reals, $\{b_n : n = 1, 2, ...\}$, the infinite product $\prod_{n=1}^{\infty} b_n$ is defined by $\lim_{n\to\infty} \prod_{k=1}^{n} b_k$, provided this limit exists.)

- 4. Consider two countable sequences of events, {A_n : n = 1, 2, ...} and {B_n : n = 1, 2, ...}, on the same probability space (Ω, F, P). Assume that, for each n, A_n and B_n are independent. Moreover, assume that A = lim_{n→∞} A_n and B = lim_{n→∞} B_n exist.
 Show that A and B are independent.
- 5. A sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R} -valued random variables, defined on a common probability
 - space (Ω, \mathcal{F}, P) , is said to converge completely if for any $k = 1, 2, ..., \sum_{n=1}^{\infty} P(|X_n| > k^{-1}) < \infty$. • Show that if $\{X_n : n = 1, 2, ...\}$ converges completely, then $\lim_{n \to \infty} X_n = 0$ almost surely.
- 6. Construct a sequence $\{X_n : n = 1, 2, ...\}$ of \mathbb{R}^+ -valued random variables (i.e., $X_n \ge 0$, for all n) that satisfies $\sum_{n=1}^{\infty} P(X_n > k^{-1}) < \infty$, for any k = 1, 2, ..., but for which $\lim_{n\to\infty} E(X_n) \ne 0$.
- 7. Consider a countable sequence {X_n : n = 1, 2, ...} of random variables defined on a common probability space (Ω, F, P). Assume that each random variable X_n is uniformly distributed on (0, 1), hence, P(c < X_n < d) ≡ P({ω ∈ Ω : X_n(ω) ∈ (c, d)}) = d c, for any 0 ≤ c < d ≤ 1.
 Show that the sequence {1/(n²X_n) : n = 1, 2, ...} converges almost surely to 0 as n → ∞.