AMS 261: Probability Theory (Fall 2017)

Homework 5 (due Wednesday 12/13)

1. Let X be a random variable defined on a probability space (Ω, \mathcal{F}, P) and taking values in a measurable space (Ψ, \mathcal{G}), where \mathcal{G} is the σ-field on space Ψ. Consider the collection \mathcal{A} of subsets of Ω consisting of $X^{-1}(B)$ for all $B \in \mathcal{G}$.

- Show that \mathcal{A} is a σ-field on Ω.

2. For $k=1,2, \ldots$, consider random variables $X_{k}:(\Omega, \mathcal{F}, P) \rightarrow\left(\Psi_{k}, \mathcal{G}_{k}\right)$ and measurable functions $\varphi_{k}:\left(\Psi_{k}, \mathcal{G}_{k}\right) \rightarrow\left(\Theta_{k}, \mathcal{H}_{k}\right)$. Assume that the countable sequence of random variables $\left\{X_{k}: k=1,2, \ldots\right\}$ is independent.

- Prove that the sequence $\left\{\varphi_{k} \circ X_{k}: k=1,2, \ldots\right\}$ is independent.

3. Let $\left\{A_{n}: n=1,2, \ldots\right\}$ be a countable independent sequence of events on a probability space (Ω, \mathcal{F}, P).

- Prove that $P\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\prod_{n=1}^{\infty} P\left(A_{n}\right)$.
(Note: For a countable sequence of reals, $\left\{b_{n}: n=1,2, \ldots\right\}$, the infinite product $\prod_{n=1}^{\infty} b_{n}$ is defined by $\lim _{n \rightarrow \infty} \prod_{k=1}^{n} b_{k}$, provided this limit exists.)

4. Consider two countable sequences of events, $\left\{A_{n}: n=1,2, \ldots\right\}$ and $\left\{B_{n}: n=1,2, \ldots\right\}$, on the same probability space (Ω, \mathcal{F}, P). Assume that, for each n, A_{n} and B_{n} are independent. Moreover, assume that $A=\lim _{n \rightarrow \infty} A_{n}$ and $B=\lim _{n \rightarrow \infty} B_{n}$ exist.

- Show that A and B are independent.

5. A sequence $\left\{X_{n}: n=1,2, \ldots\right\}$ of \mathbb{R}-valued random variables, defined on a common probability space (Ω, \mathcal{F}, P), is said to converge completely if for any $k=1,2, \ldots, \sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>k^{-1}\right)<\infty$. - Show that if $\left\{X_{n}: n=1,2, \ldots\right\}$ converges completely, then $\lim _{n \rightarrow \infty} X_{n}=0$ almost surely.
6. Construct a sequence $\left\{X_{n}: n=1,2, \ldots\right\}$ of \mathbb{R}^{+}-valued random variables (i.e., $X_{n} \geq 0$, for all n) that satisfies $\sum_{n=1}^{\infty} P\left(X_{n}>k^{-1}\right)<\infty$, for any $k=1,2, \ldots$, but for which $\lim _{n \rightarrow \infty} \mathrm{E}\left(X_{n}\right) \neq 0$.
7. Consider a countable sequence $\left\{X_{n}: n=1,2, \ldots\right\}$ of random variables defined on a common probability space (Ω, \mathcal{F}, P). Assume that each random variable X_{n} is uniformly distributed on $(0,1)$, hence, $P\left(c<X_{n}<d\right) \equiv P\left(\left\{\omega \in \Omega: X_{n}(\omega) \in(c, d)\right\}\right)=d-c$, for any $0 \leq c<d \leq 1$.

- Show that the sequence $\left\{1 /\left(n^{2} X_{n}\right): n=1,2, \ldots\right\}$ converges almost surely to 0 as $n \rightarrow \infty$.

