
AMS 261: Probability Theory (Fall 2017)

Random infinite series

Consider a countable sequence {Xn : n = 1, 2, ...} of independent R–valued random variables

defined on a common probability space (Ω,F , P ). A key theoretical question for the associated

infinite series,
∑∞

n=1Xn, involves study of conditions for its almost sure (a.s.) convergence.

By definition,
∑∞

n=1Xn converges a.s. if the sequence of random variables {Sn : n = 1, 2, ...},
where Sn =

∑n
i=1Xi, converges a.s. Hence, the definition exploits the relation between series of

random variables and series of reals (note that for each ω ∈ Ω,
∑∞

n=1Xn(ω) is a series of reals).

In fact, it can be shown that for independent {Xn : n = 1, 2, ...},
∑∞

n=1Xn either converges a.s. or

diverges a.s., with some key convergence results including:

Theorem 1: For a sequence {Xn : n = 1, 2, ...} of independent R–valued random variables defined

on a common probability space (Ω,F , P ),
∑∞

n=1Xn converges a.s. to an R–valued random variable

Z if and only if
∑∞

n=1Xn converges in probability to Z.

Theorem 2: Consider a sequence {Xn : n = 1, 2, ...} of independent R–valued random variables,

defined on a common probability space (Ω,F , P ). Assume that each Xn has finite variance and

that
∑∞

n=1 Var(Xn) <∞. Then,
∑∞

n=1{Xn − E(Xn)} converges a.s.

Kolmogorov three-series theorem: Let {Xn : n = 1, 2, ...} be an independent sequence of

R–valued random variables defined on a common probability space (Ω,F , P ). For each n, consider

the truncated version of Xn defined by Yn = Xn1(|Xn|≤b), where b is a positive real constant. Then∑∞
n=1Xn converges a.s. if and only if each of the following three series converges:

∑∞
n=1 E(Yn);∑∞

n=1 Var(Yn); and
∑∞

n=1 P (Xn 6= Yn) =
∑∞

n=1 P (|Xn| > b).

Weak and strong laws of large numbers

Laws of large numbers involve convergence results for functionals of Sn =
∑n

i=1Xi (the average,

n−1
∑n

i=1Xi, being a standard example), where the sequence of random variables {Xn : n = 1, 2, ...}
is independent. Various versions of laws of large numbers exist, but the key results include the

“Weak law of large numbers” (WLLN) (yielding convergence in probability) and the “Strong law

of large numbers” (SLLN) (resulting in almost sure convergence). In particular, the two standard

versions for the SLLN correspond to different assumptions for the sequence {Xn : n = 1, 2, ...}.
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Weak law of large numbers

Consider an independent sequence of R–valued random variables {Xn : n = 1, 2, ...}, defined on a

common probability space (Ω,F , P ), and let Sn =
∑n

i=1Xi. Assume that for each n, E(X2
n) <∞,

and that limn→∞ b−2n

∑n
i=1 Var(Xi) = 0, where {bn : n = 1, 2, ...} is a sequence of reals. Then,

b−1n (Sn − E(Sn)) converges to 0 in probability.

Proof. Application of Chebyshev’s inequality to random variable b−1n Sn.

Strong law of large numbers

Consider an independent sequence of R–valued random variables {Xn : n = 1, 2, ...}, defined on a

common probability space (Ω,F , P ), and let Sn =
∑n

i=1Xi. Moreover, let {bn : n = 1, 2, ...} be an

increasing sequence of positive reals such that limn→∞ bn =∞. Assume that for each n, E(Xn) = 0

and E(X2
n) <∞, and that

∑∞
i=1 b

−2
i E(X2

i ) <∞. Then, b−1n Sn converges to 0 almost surely.

Proof. Based on Theorem 2 and a result from series of real numbers, the Kronecker lemma.

Kronecker lemma: Consider a sequence {xn : n = 1, 2, ...} of reals such that
∑∞

i=1 xi <∞,

and another sequence {bn : n = 1, 2, ...} of positive reals which is increasing, with limn→∞ bn =

∞. Then, limn→∞ b−1n

∑n
i=1 bixi = 0.

Kolmogorov strong law of large numbers

Let {Xn : n = 1, 2, ...} be independent and identically distributed (i.i.d.) R–valued random vari-

ables, defined on a common probability space (Ω,F , P ). If E(|X1|) < ∞, then n−1
∑n

i=1Xi con-

verges to E(X1) almost surely. Moreover, if E(|X1|) =∞, then n−1
∑n

i=1Xi diverges a.s.

Proof. For the case where E(|X1|) < ∞, assume without loss of generality that E(X1) = 0.

The key idea is that to prove n−1
∑n

i=1Xi →a.s. 0 it suffices to prove n−1
∑n

i=1 Yi →a.s. 0,

where Yn = Xn1{|Xn|<n} is a truncated version of Xn. This is based on the following lemmas:

Lemma 1: Let {Xn : n = 1, 2, ...} be i.i.d. R–valued random variables on probability space

(Ω,F , P ). Then, E(|X1|) <∞ if and only if P (lim supn→∞{|Xn| ≥ n}) = 0.

Lemma 2: Let Y be an R+–valued random variable on probability space (Ω,F , P ). Then,∑∞
n=1 P (Y ≥ n) ≤ E(Y ) ≤ 1 +

∑∞
n=1 P (Y ≥ n).

Almost sure convergence for n−1
∑n

i=1 Yi can be established using Theorem 2 (truncation

ensures finiteness of Var(Yn), even though no assumption is made on finiteness of Var(Xn)).
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